Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities

نویسندگان

  • Filippo Sanfilippo
  • Jon Azpiazu
  • Giancarlo Marafioti
  • Aksel A. Transeth
  • Øyvind Stavdahl
  • Pål Liljebäck
چکیده

In nature, snakes can gracefully traverse a wide range of different and complex environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport tools to hazardous or confined areas that other robots and humans are unable to access. In order to carry out such tasks, snake robots must have a high degree of awareness of their surroundings (i.e., perception-driven locomotion) and be capable of efficient obstacle exploitation (i.e., obstacle-aided locomotion) to gain propulsion. These aspects are pivotal in order to realise the large variety of possible snake robot applications in real-life operations such as fire-fighting, industrial inspection, search-and-rescue, and more. In this paper, we survey and discuss the state of the art, challenges, and possibilities of perception-driven obstacle-aided locomotion for snake robots. To this end, different levels of autonomy are identified for snake robots and categorised into environmental complexity, mission complexity, and external system independence. From this perspective, we present a step-wise approach on how to increment snake robot abilities within guidance, navigation, and control in order to target the different levels of autonomy. Pertinent to snake robots, we focus on current strategies for snake robot locomotion in the presence of obstacles. Moreover, we put obstacle-aided locomotion into the context of perception and mapping. Finally, we present an overview of relevant key technologies and methods within environment perception, mapping, and representation that constitute important aspects of perception-driven obstacle-aided locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Autonomous Mobile Robots Able to Take Over Construction? A Review

Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction qua...

متن کامل

Biologically Inspired Spiking Neural Network for Autonomous Locomotion Control of Snake-Like Robots

Snake-like robots have been widely studied due to their special 3D locomotion ability and the adaptability in diverse complex environments. Autonomous locomotion, that is, acquiring environment information, making locomotion decisions independently and then performing locomotion, is of the essence for snake-like robots to complete self-governed tasks in various complex terrain. The traditional ...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017